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ABSTRACT
After researching predictive policing practices, and with police violence an ever present horror, the
first author found herself motivated to consider the real human harm that can result from data
driven decisions. We examine how certain data science practices associated with predictive policing
contribute to and are complicit with human suffering caused by police brutality. We then put forward
an idea of data scientists internally motivated to center their work around minimizing negative human
consequences rather than traditional goals of performance optimization or increasing profits. We
encourage further research into the disciplinary norms which distance model builders from practical
implementations of their work, and how academics can intervene.

INTRODUCTION
Imagine you are a data scientist, tasked with analyzing crime data to decide where patrols will be.
Further imagine that an officer you have placed pulls the trigger, and ends a life. Had you not decided
so, this officer would not have been there to kill someone. How would you feel? Would you be wracked
with guilt and resign, or motivated to change your practices? Would you even make the connection
between the product of your labor and such extreme violence? Unfortunately, we live in a reality
where this hypothetical could be all too real.

Over the past several years, the first author has conducted research on the implementation and use
of geospatial predictive policing tools. A large portion of her work has examined how police employees
implemented geospatial analysis software and how the reports are then interpreted and converted into
actual patrolling allocation decisions, which led to many interactions with crime analysts, the data
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scientists specifically tasked with analyzing crime data. In addition to exploring how these tools are
being used by police, she questioned why these tools are being used. Understanding the motivations
for predictive policing allows researchers to better understand the specific implementation practices
chosen as well as provide feedback in a way that is more likely to be valued and implemented.

After the first author’s various studies into predictive policing algorithms, and all the problems with
them, the new wave of racist police violence inspired a new set of questions. The mental juxtaposition
of those data scientists in crime labs and the armor clad riot police, both working for the same system,
stuck in her head. How do these data scientists understand their place and connection with state
sanctioned tools of violence? Do they recognize the role they might have played at all? Do they feel
culpable or even guilty? Do they feel a motivation to make meaningful reform from within? You could
also ask all of these questions of the data scientists at tech firms who built the predictive policing
tools in the first place.
Questions such as these have haunted us for the past several months, and we have concentrated

them into several questions for discussion and future research both within predictive policing and
generalized to the field of data science as a whole. What are the real, human impacts of data science
practices? Do data scientists see themselves as having a role in such impacts at all? If so, what do
they feel about it? What can individual data scientists do to make meaningful changes? In particular,
how can data scientists, who through their work reduce humans to mere data points, reconcile with
the possibility of complicity in the destruction of human life? With industry and most of the public
sector prioritizing performance optimization, we question whether it is possible for data scientists to
make this change from the inside, or whether it is necessary to divest themselves from their corporate
or governmental backers.

DATA-DRIVEN POLICING PRACTICES
Research has shown that officers who are aware of being in an algorithmically identified ‘hotspot’,
that is, a geographically defined area with a relatively high rate of past or predicted crime, are more
likely to take biased police action against racial minorities than those who are not in a hotspot [13].
Furthermore, it has been shown that there are significant racial biases inwhompolice choose to interact
with and the extent of action taken in almost every aspect of policing [4–7, 10, 12, 14, 16, 18, 19, 21, 23–
27]. In combination, this means that an officer who is placed in an algorithmically identified hotspot by
data driven software are more likely to take drastic, potentially violent action against racial minorities.
Were an algorithmically placed officer to take such a heightened action and cause serious, irreparable
harm, then the data scientists who put them there would be a major link in the causal chain for that
harm, creating an ethical quandry for the data scientist and possibly leading to intense guilt.
There are several further factors in the deployment of predictive policing tools which compound

the ethical qualms of such scenarios. Firstly, many predictive policing and data driven criminal justice
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tools are hidden behind black boxes, making it incredibly difficult to audit tools being used and verify
any level of impartiality and prevent contesting decisions [2, 9]. Second, many crime lab workers lack
specific training with and an intuitive understanding of the tools they implement [28]. Both of these
highlight bad data science practices which absolutely could lead to biased arrests, police brutality,
and even state sanctioned killings.
Often, the stated motive for using predictive policing tools was exclusively to increase officer

efficiency [11]. However, there was a significant lack of attention to reducing bias in policing actions.
Such goals demonstrate a failure to center human outcomes, instead focusing on saving money
through promoting a purely technical concept of performance. Such a paradigm will clearly create
ethical pitfalls; that is, some scenario where the immediate outcome is not harmful, but creates a
scenario that can easily become incredibly harmful with the right circumstances.

Such ethical pitfalls are not limited to predictive policing itself. Recently, a data driven advertising
service posted many Los Angeles Police Department recruitment ads on the alt-right website Breit-
bart [22], which could lead to a higher number of extremely conservative, arguably fascist readers
joining the police, and bring their own, often racially biased, political ideologies to what should essen-
tially be an impartial and objective position. Even if the ad placements were based on pre-existing
biases of American police, the data driven advertising creates a feedback loop of self-reinforcing
biases. We can see the effects of this radicalizing of law enforcement in the Black Lives Matters (BLM)
protests, where heavily armed right wing militia groups are supported and provisioned by the same
police who teargas BLM protesters, even to the point of letting a right wing militia member kill two
protesters and walk away [15]. Perhaps if recruitment advertisements had been on a more left wing
web site, the bias would have been lessened.

CREATING HUMAN-FIRST SYSTEMS
While much has been said about biased outcomes of data science practices, it has often been in an
abstract vacuum rather than grounded in the actual negative consequences of bias [8]. This allows
data scientists to be able to justify almost any tool with some arbitrary accuracy rating, which reflects
merely a mathematical concept of correctness and allows data scientists to distance themselves from
the actual fallout of their work. It becomes a game of what one can do rather than what one should do,
and is how we end up with dubious projects such as algorithmic ethnicity classifiers [17, 20], which
could easily be used as racist profiling tools.

A wide range of significant biases exist in the tools and practices created by data scientists. While
many academics call for more equitable and unbiased systems, such a sentiment is rarely heard from
non-academic working data scientists. And as data driven tools are implemented in increasingly
impactful contexts [1], data scientists have an increasing ethical duty to build systems which minimize
the harm they cause, while centering that work around specific cases of human suffering rather than
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optimizing performance. Though this can mean the same thing, such as with medical diagnostic tools,
often one comes at the cost of the other.
Such a shift in motivation would encourage data scientists to know where data science does not

belong at all. Not every situation calls for a big data machine learning tool [3], yet building such a tool
for every possible use leads to a wide variety of over-promising, under-performing tools which are
never truly checked for the implications of their use. However, efforts limiting the availability of data
science tools run opposed to the need for open, transparent tools. And thus such an attitude change
must come from within the field itself and should be fostered by better ethical education practices.
This raises a question of how academics can reduce the proliferation of garbage data science without
hiding behind the blackboxes that cause us so many headache and without gatekeeping data science.
To allow for such a change requires acknowledging and changing one not-so-implicit bias of the

data science field as a whole. As most tools are built at the behest of corporations, whether in house
or at a dedicated software firm, these tools overwhelmingly serve to protect capital, increase revenue,
and essentially reduce their human subjects to data points of their economic value. Thus we can
visualize the data scientist pulled between two realities: the need to satisfy their employers, and
the desire to follow their conscience. The academic community must consider this conflict when
pushing for theory based solutions and devising new tools. Without acknowledging that first reality,
academics are creating solutions only for academia, and prevent solutions from adequately translating
to industry or the public sector. Without just leaving a company, as is often called for, what can a data
scientist without a background in critical algorithm analysis realistically do while keeping their job?
We suggest further discussion and research into empowering data scientists to reduce harm centered
around real, grounded understandings of human harm.

CONCLUSION
Grounded in a background in predictive policing, and in light of the widespread racial police brutality,
we see how data science can contribute to human suffering and even death. We see how even in
other contexts, the data science field has incredible power to destroy lives. Thus, we call for a critical
examination of the systemic biases and practices in the field of data science which allow them to
make systems which harm, and call for a paradigm shift towards building systems with an explicit
of goal centering and empowering people. We ask what practicing data scientists, grounded in the
technical aspects of data science rather than theory and ethics, can do? What changes can be made
from within? What tools do they need to make these changes? What can academia do to facilitate
real data scientists to make meaningful and ethical changes themselves?
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