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Computer vision is central to many artificial intelligence (AI) applications, from 
autonomous vehicles to consumer devices. However, the data behind such technical 
innovations are often collected with insufficient consideration of ethical concerns1–3. 
This has led to a reliance on datasets that lack diversity, perpetuate biases and are 
collected without the consent of data rights holders. These datasets compromise 
the fairness and accuracy of AI models and disenfranchise stakeholders4–8. Although 
awareness of the problems of bias in computer vision technologies, particularly 
facial recognition, has become widespread9, the field lacks publicly available, 
consensually collected datasets for evaluating bias for most tasks3,10,11. In response, 
we introduce the Fair Human-Centric Image Benchmark (FHIBE, pronounced 
‘Feebee’), a publicly available human image dataset implementing best practices  
for consent, privacy, compensation, safety, diversity and utility. FHIBE can be used 
responsibly as a fairness evaluation dataset for many human-centric computer 
vision tasks, including pose estimation, person segmentation, face detection  
and verification, and visual question answering. By leveraging comprehensive 
annotations capturing demographic and physical attributes, environmental factors, 
instrument and pixel-level annotations, FHIBE can identify a wide variety of biases. 
The annotations also enable more nuanced and granular bias diagnoses, enabling 
practitioners to better understand sources of bias and mitigate potential downstream 
harms. FHIBE therefore represents an important step forward towards trustworthy AI, 
raising the bar for fairness benchmarks and providing a road map for responsible 
data curation in AI.

Image datasets have played a foundational role in the history of AI 
development, with ImageNet12 enabling the rise of deep learning meth-
ods in the early 2010s13. While AI technologies have made tremendous 
strides in their capabilities and adoption since then, bias in data and 
models remains a persistent challenge2,14. Inadequate evaluation data 
can result in fairness and robustness issues, making it challenging to 
identify potential harms1,10,15. These harms include the perpetuation of 
racist, sexist and physiognomic stereotypes2,4, as well as the exclusion 
or misrepresentation of entire populations3,5,16. Such data inadequacies 
therefore compromise the fairness and accuracy of AI models.

The large-scale scraping of images from the web without consent2,6,17 
not only exacerbates issues related to data bias, but can also present 
legal issues, particularly related to privacy7,18,19 and intellectual prop-
erty (IP)20. Consequently, prominent datasets have been modified or 
retracted8. Moreover, the lack of fair compensation for data and anno-
tations presents critical concerns about the ethics of supply chains in 
AI development21,22.

Datasets made available by government agencies such as NIST23 or 
using third-party licensed images24 often have similar issues with the 
absence of informed consent and compensation. Many dataset devel-
opers mistakenly assume that using images with Creative Commons 
licences addresses relevant privacy concerns3. Only a few consent-based 
fairness datasets with self-reported labels exist25–27. However, these 
datasets have little geographical diversity. They also lack pixel-level 
annotations, meaning that they can be used for only a small number 
of human-centric computer vision tasks3.

Evaluating models and mitigating bias are key for ethical AI develop-
ment. Recent methods such as PASS28, FairFaceVar29 and MultiFair30 aim 
to reduce demographic leakage or enforce fairness constraints through 
adversarial training and fairness-aware representations. Previous work 
has also shown that many face-recognition models and benchmarks 
encode structural biases, underscoring the need for fairness at every 
stage of development31. Yet, these methods remain constrained by the 
same dataset limitations that they seek to address, including a lack of 
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consent, demographic self-identification and global representation. 
Most research in the computer vision fairness literature relies on repur-
posing non-consensual datasets that lack self-reported demographic 
information. This lack of self-reported demographic information then 
leads researchers to guess complex social constructs, such as the race 
and gender of image subjects, from images alone. These inferences 
can entrench stereotypes32,33, cause psychological harm to data sub-
jects when inaccurate34,35 and compromise the validity of downstream 
tasks36.

The dearth of responsibly curated datasets creates an ethical 
dilemma for practitioners who would like to audit bias in their mod-
els. Their options are to use (1) diverse and densely annotated public 
datasets that carry legal or ethical risks; (2) one of the few publicly 
available consent-based but highly limited datasets (requiring them 
to add their own pixel-level annotations); (3) proprietary datasets that 
do not provide transparency to external parties; (4) datasets that have 
been quietly retracted due to ethical concerns but continue to circulate 
in derivative forms37; or (5) nothing—simply to not check for bias7,11,18.

To address these challenges, we introduce the FHIBE, a publicly 
available, consensually collected, globally diverse fairness evalua-
tion dataset for a wide range of vision-based tasks, from face verifi-
cation to visual question answering (VQA). FHIBE comprises 10,318 
images of 1,981 unique individuals from 81 countries/areas38. Current 
consent-based fairness datasets25–27 lack data from regions with strin-
gent regulations, such as the European Union (EU), making FHIBE, to 
our knowledge, the first publicly available, human-centric computer 
vision dataset to include consensually collected images from the EU. 
FHIBE features the most comprehensive annotations to date of demo-
graphic and physical attributes, environmental conditions, camera 
settings and pixel-level annotations. To assess FHIBE’s capabilities, we 
used it to evaluate bias in a wide variety of narrow models (designed for 
specific tasks) and foundation models (general purpose) commonly 
used in human-centric computer vision. Our analyses spanned eight 
narrow model tasks (pose estimation, person segmentation, person 
detection, face detection, face parsing, face verification, face recon-
struction and face super-resolution), along with VQA for foundation 
models. We affirm previously documented biases, and we show that 
FHIBE can support more granular diagnoses on the factors leading 
to such biases. We also identify previously undocumented biases, 
including lower model performance for older individuals and strong 
stereotypical associations in foundation models based on pronouns 
and ancestry.

A large number of participants were involved in the data collection, 
annotation and quality assurance (QA) processes for our project (as 
described in Supplementary Information C). To collect a dataset as 
globally diverse as possible, we worked with data vendors to collect 
data from crowdsourced image subjects. Additional annotations 
were also collected from crowdsourced and vendor-employed anno-
tators. We provided extensive guidelines to vendors and performed 
additional steps for QA, privacy preservation, IP protection and con-
sent revocation to further protect the rights of those involved in the 
data-collection process (Methods). By creating FHIBE, we not only 
provide researchers with a new evaluation dataset, but we also show the 
possibilities and limitations of responsible data collection and curation  
in practice.

FHIBE
Overview
FHIBE comprises 10,318 images of 1,981 unique individuals, averaging 
six images per primary subject. We used a crowdsourcing approach, 
working with data vendors that operate globally to collect the dataset. 
We developed comprehensive data-collection guidelines and imple-
mented a rigorous quality assessment protocol, which we discuss in 
detail in the Methods.

The dataset includes 1,711 primary subjects (individuals submit-
ting images of themselves; Supplementary Information C) and 417 
secondary subjects (individuals who appear alongside primary sub-
jects, increasing the diversity and complexity of the images). Note that 
some primary subjects are also secondary subjects in other images. 
In total, 623 images contain both primary and secondary subjects. 
Captured between May 2011 and January 2024, the images span 81 
countries/areas across 5 regions and 16 subregions38. To increase 
the diversity of the images (location, clothing, appearance, environ-
mental conditions and so on), we permitted participants to submit 
images that they had previously taken of themselves. The images 
were taken with 785 distinct camera models from 45 manufactur-
ers, and represent a wide range of real-world conditions, including 
16 scene types, 6 lighting conditions, 7 weather scenarios, 3 cam-
era positions and 5 camera distances. Example images with the 
accompanying subject, instrument and environment metadata are  
provided in Fig. 1.

FHIBE also features self-reported pose and interaction annotations, 
with predefined labels categorized into 16 body poses, 2 head poses 
and 47 distinct interactions—14 with other subjects and 33 with objects. 
The dataset offers a rich array of appearance characteristics, includ-
ing 15 hair and 4 facial hair styles, 7 hair types, 13 hair and 12 facial hair 
colours, 9 eye colours and 11 types of facial marks.

There are also 6 pronoun categories, 56 integer ages (18 to 75 years) 
grouped into 5 age categories, 20 ancestry subregions within 5 regions 
and 6 Fitzpatrick skin tones39. There are 1,234 intersectional groups 
defined by age group, pronoun, ancestry subregion and Fitzpatrick 
skin tone, with the number of images per group ranging from 1 to 1,129, 
with a median of 9 images.

FHIBE includes pixel-level annotations for face and person bounding 
boxes, 33 keypoints and 28 segmentation categories (Fig. 2). Annota-
tor identifiers (an anonymized ID distinguishing each annotator) are 
provided for each annotation. Annotator demographic information 
is also included for transparency, if self-disclosed by the annotators. 
A complete list of annotations is provided in Supplementary Informa-
tion A. Distribution plots showing the diversity of FHIBE are shown in 
Extended Data Figs. 1 and 2 and Supplementary Information B and 
D. The inter-rater reliability analysis, showing the high quality and 
consistency of FHIBE annotations, is shown in the Methods and Sup-
plementary Information E.

Furthermore, FHIBE includes two derivative face datasets: a cropped- 
only set with 10,941 images from 1,981 subjects, and a cropped-and- 
aligned set with 8,370 images from 1,824 subjects. Both face datasets 
include all annotations.

Comparison with existing datasets
We compare FHIBE against 27 human-centric computer vision data-
sets that have been used in fairness evaluations in Extended Data 
Table 1, considering their collection methods, annotations and ethical  
dimensions.

The majority of the datasets were scraped from Internet platforms 
or derived from scraped datasets. Seven well-known datasets were 
revoked by their authors and are no longer publicly available. Rea-
sons for their removal are typically not stated explicitly, but point to 
growing criticism due to ethical challenges and concerns around web 
scraping data for AI development37. While a number of datasets have 
annotated bounding boxes, key points and segmentation masks, their 
pixel-level annotations do not match the density of FHIBE’s annotations. 
Datasets with dense pixel-level annotations, like COCO40, VQA2.041 
and MIAP42, contain only limited demographic information, none of 
which is self-reported.

Only four datasets mention that data were collected after obtaining 
consent from data subjects. CCv226 and the Chicago Face Database27 are 
consent-based datasets, but provide no further details on how consent 
was obtained. While Dollar Street43 provides details on how consent 
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was obtained, use in AI development was not stated as its purpose 
for collection, and there is no indication that the subjects consented 
to the processing of their biometric or other personal information. 
FHIBE stands out as the only dataset collected with robust consent for 
AI evaluation and bias mitigation.

FHIBE also has greater utility for diagnosing bias in AI compared 
with other consent-based datasets. CCv2 and Dollar Street have no 
pixel-level annotations. This makes them unsuitable for the diverse 
computer vision task evaluations that FHIBE enables. CCv2 and Chicago 
Face Database also only feature videos/images of individuals facing the 
camera, largely indoors, with only their head and shoulders shown. They 
lack full-body images and diverse backgrounds and poses, limiting their 
utility for many computer vision tasks, such as pose estimation, and 
for evaluating how models might perform in deployment contexts in 
which the individuals might not be looking at the camera.

Moreover, FHIBE stands out from other consent-driven datasets in 
terms of its detailed and self-reported demographic labels, which ena-
ble the investigation of model performance at complex intersections 

of demographic attributes (Table 1). Although CCv1 has 4.4 times more 
images and CCv2 has 2.8 times more subjects than FHIBE, FHIBE has 
3.4 times more annotations and 16.9 times more attribute values 
(Table 2). FHIBE also has greater representation from regions that are 
under-represented in many computer vision datasets, such as Africa 
(44.7%) and lower-middle income economies (71.5%) (Table 3), making 
it uniquely suitable for bias evaluation.

Ethical considerations to FHIBE design
In developing FHIBE, we sought to implement best practices for ethical 
data collection recommended in the literature2,3,44. We focused particu-
larly on consent, privacy protection, compensation, safety, diversity 
and utility. The design decisions discussed below can also provide 
a starting point for future responsible data collection and curation 
efforts, including those not focused on fairness evaluation. Detailed 
descriptions of how these ethical considerations were implemented 
are provided in the Methods.

Image subject annotations

Age: 18
Pronoun: he/him/his
Ancestry: Asia (Southern Asia)
Nationality: Indian
Natural skin tone: Fitzpatrick type II
Apparent skin tone: Fitzpatrick type V
Natural left/right eye colour: brown/brown
Apparent left/right eye colour: brown/brown
Natural head hair type: straight
Apparent head hair type: straight
Hairstyle: down (short)
Natural head hair colour: dark brown/black
Apparent head hair colour: dark brown/black
Facial hairstyle: none
Natural facial hair colour: dark brown/black
Apparent facial hair colour: none
Facial marks: none
Body pose: sitting
Subject–object interaction: none
Subject–subject interaction: NA
Head pose: typical

Instrument annotations

Capture hour: 06:00–11:59
Capture date: June 2023
Capture location: Luanda, Angola
Camera manufacturer: Huawei
Camera model: CLT-AL00
Image width: 1,536 px
Image height: 2,048 px
Shutter speed: 29.8973
Aperture: 1.69
ISO: 50
Focal length: 5.58

Environment annotations

Camera position: typical
Camera distance: CD II
Weather: clear
Scene: outdoor (industrial and construction)
Lighting: lighting from above the head/face
Lighting from in front of the head/face
Lighting from the right of the head/face

Fig. 1 | Annotations about the image subjects, instrument and environment 
are available for all images in FHIBE. For visualization purposes, we display 
one type of metadata per image in this figure. Each annotation is linked to the 
annotators who made or checked the annotation. If the annotator disclosed 

their demographic attributes (age, pronouns, ancestry), that information  
is also provided. A full list of annotations is provided in Supplementary 
Information A. NA, not applicable.
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Consent
Informed consent is central to research involving human participants, 
promoting participant safety and protection while supporting research 
integrity19,45. It involves the participants having sufficient information 
regarding the project and the potential risks before deciding to partici-
pate. Informed consent is also fundamental to data privacy protection, 
as encoded in various laws and regulations7,18,19,46.

Our consent processes were designed to comply with comprehensive 
data protection laws like the EU General Data Protection Regulation 
(GDPR)46. These processes included developing consent forms with 
clear language about the uses and disclosures of the collected data, 
the processing of biometric and sensitive data and the rights of data 
subjects with regard to their data. Policy considerations imbued in data 

privacy laws, such as respect for human dignity, also influenced other 
aspects of our data collection, including decisions regarding the types 
of attributes we collected (for example, pronouns rather than gender), 
participant recruitment guidelines (for example, no coercive practices) 
and restrictions on downstream uses of the dataset (for example, users 
are prohibited from attempting to reidentify subjects).

To ensure that consent is given on a voluntary basis46, data subjects 
retain control over their personal information and may withdraw their 
personal data from the dataset at any time, with no impact on the 
compensation they received from the project. In the event of consent 
withdrawal, we commit to maintaining dataset integrity by replacing 
withdrawn images and preserving the dataset’s size and diversity to 
the extent possible. This commitment makes FHIBE a first in computer 
vision—a living dataset designed to evolve responsibly.

Fig. 2 | Example FHIBE images annotated with detailed pixel-level 
annotations, keypoints, segmentation masks and bounding boxes. 
Pixel-level annotations include keypoint annotations (small red circles) 
indicating the geometric structure (white lines) of human bodies and faces  

(for example, right eye inner, left foot index); segmentation masks dividing  
the human body and face into segments, assigning a label to each pixel  
(for example, left arm, jewellery); and face and person bounding boxes (red and 
blue rectangles, respectively).
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Privacy and IP
In addition to obtaining informed consent, we took additional meas-
ures to remove incidental personal information from the images. We 
used a state-of-the-art generative diffusion model47 to in-paint over 
non-consensual subjects (for example, individuals in the background 
of an image) and personally identifiable information (for example, 
license plates, credit cards). We then manually checked each image  
to verify the personal information had been removed, mitigating poten-
tial algorithmic biases in the automated methods48. This approach 
avoids the limitations of traditional privacy measures, such as auto-
mated face blurring49, which can still allow for reidentification through 
distinctive non-facial features (for example, tattoos, birthmarks)50. 
We further tested our method to ensure that it did not compromise 
the utility of the data for model evaluation. Moreover, we coarsened 
certain attributes and release others only in aggregate form.

To secure appropriate rights to license the images for downstream 
users, the participants submitting images were also required to review 
and agree to terms affirming they had the rights to provide the images 
and understood the nature of their contribution. Furthermore, our 
instructions to data vendors and participants included requirements 
to minimize the presence of third-party IP, such as trademarks and 
landmarks. We also implemented automated checks with manual veri-
fication to detect and exclude images with prominent third-party IP, 
such as logos, from our dataset.

Compensation
Crowdworkers often contend with low wages and demanding work-
ing conditions21,22, while individuals whose images are included in 
web-scraped datasets receive no compensation. To address these 
concerns, we asked data vendors to report minimum payment rates 
per task per region and to compensate crowdworker participants—
image subjects, annotators and QA annotators (definitions are provided 

in Supplementary Information C)—at least the applicable local mini-
mum wage based on task-time estimates. Vendors’ reported minimum 
payment rates were cross-referenced against the International Labor 
Organization’s Global Wage Report51 or, where this was not applicable, 
with the minimum wage of a country with comparable GDP per capita. 
The median compensation for image subjects was 12× the applicable 
minimum wage (further information about project costs is provided 
in the Discussion and Methods).

Safety
Webscraped datasets frequently include harmful and illegal content, 
ranging from derogatory annotations to instances of child sexual abuse 
material (CSAM)2,6,17. Although the risk of such content appearing in 
our dataset was low given our sourcing method, instructions to data 
subjects and vendor QA, we performed additional manual and auto-
mated checks to ensure safety. Each image was manually reviewed to 
identify and remove any harmful content and the image hashes were 
cross-referenced against a database of known CSAM maintained by the 
National Center for Missing & Exploited Children (NCMEC). This dual 
approach—leveraging both technology and human judgement—helped 
to create a dataset that is both safe and respectful of human dignity.

Diversity
While diversity is a relevant consideration for data collection gener-
ally, the fact that FHIBE is a fairness evaluation set made it especially 
important to optimize for diversity across many dimensions: image 
subject demographics, appearance (for example, not wearing the 
same clothing in all images), poses, interactions between subjects 
and objects, and environment.

FHIBE contains detailed demographic information—such as age, 
pronouns and ancestry, making it possible to use FHIBE to evaluate 
model bias along many axes of interest. As FHIBE is a publicly available 
dataset, we sought to balance minimizing the disclosure of sensitive 
information while maximizing the availability of useful annotations 
for bias diagnosis. This led to our decision to collect pronouns, as pro-
nouns are more likely to be public-facing information, while gender 
identity and sex can be quite sensitive, particularly for gender and sex 
minorities52. Moreover, while we collected information on data subjects’ 
disability status, pregnancy status, height and weight to measure the 
diversity of our dataset along these dimensions, we do not release 
these annotations with the dataset and only disclose the summary 
statistics in aggregate for transparency purposes (Supplementary 
Information B.1). Note that participant disclosures about pregnancy 
and disability status were optional.

Collecting pronouns rather than gender identity also reduced risks 
associated with misgendering3,53, and collecting ancestry offered  
a more stable alternative to country-specific racial categories3,54.  
We further describe the rationales to use pronouns and ancestry in 
Supplementary Information J.

Table 1 | Dataset comparison by intersectional subgroups

Intersectional group Dataset Number of 
subgroups

Number of images

Med. Max. Min.

Gender × age FHIBE 23 23 3,353 1

CCv1 12 220 523 1

CCv2 23 23 1,598 1

FACET 9 2,070 22,008 3

MIAP 4 7,439 21,195 254

Gender × age ×  
skin tone

FHIBE 92 42 1,168 1

CCv1 62 38 129 1

CCv2 137 5 909 1

FACET 82 284 12,506 1

Gender × age × 
ancestry region

FHIBE 72 128 8,415 4

Gender × age × 
ancestry subregion

FHIBE 322 31 1,683 1

Gender × age × 
ancestry region ×  
skin tone

FHIBE 275 36 5,645 4

Gender × age × 
ancestry subregion × 
skin tone

FHIBE 1,234 9 1,129 1

This table shows how FHIBE compares with other fairness evaluation datasets based on 
intersectional groups, including gender or pronoun (only FHIBE uses pronouns), age, ancestry 
and skin tone. Subgroup counts and the median (med.), minimum (min.) and maximum (max.) 
number of images per subgroup are shown. FHIBE offers broader demographic representation 
through comprehensive annotations. Note that FACET and FHIBE images may be counted in 
multiple attribute categories if they have multiple/nested annotations (for example, multiple 
gender/pronoun or skin tone selections).

Table 2 | Dataset comparison by summary statistics

FHIBE CCv1 CCv2 FACET MIAP

Images/video frames 10,318 45,186 26,467 31,702 13,762

Subjects 1,981 3,011 5,567 NA NA

Attributes 71 7 21 11 9

Attribute values 8,571 294 506 97 222

This table shows how FHIBE compares with other fairness evaluation datasets based on the 
number of images, number of unique subjects, number of annotated attributes (for example, 
skin tone, pronouns, ancestry) and number of unique attribute values (for example, six possible 
values for Fitzpatrick skin tone). MIAP excludes cases with unknown age or gender. FACET and 
MIAP lack subject identifiers (non-consensual datasets), resulting in a value of not applicable 
(NA) for the number of subjects. Despite having fewer images and subjects, FHIBE provides 
the highest number of attributes and attribute values.
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We also collected annotations on phenotypic and performative 
markers to enhance bias analysis. Phenotypic attributes—like skin 
colour, eye colour and hair type—provide observable characteristics 
related to relevant demographic bias dimensions9, while performative  
markers—such as facial hair, cosmetics and clothing—help to identify  
social stereotypes and spurious correlations55. Moreover, FHIBE 
includes camera-level metadata and environmental annotations, 
capturing factors such as illumination, camera position and scene, 
which are important for understanding model performance across 
diverse conditions16,56.

With the exception of pixel-level annotations, head pose and cam-
era distance, we focused on the collection of self-reported infor-
mation to address the limitations (as discussed above) of previous 
data-collection efforts that used annotators to guess subjects’ attrib-
utes. Collecting self-reported attributes (as opposed to labelling them 
later) had the additional benefit of ensuring that the participants were 
well aware of the information about them that would be used in the  
project.

Utility
An evaluation set is valuable only insofar as it enables assessments of 
model performance on relevant tasks. FHIBE provides extensive anno-
tations for analysing human-centric visual scenes, including face- and 
person-specific bounding boxes, keypoints and segmentation masks. 
As a result, FHIBE can be used to evaluate models across a much wider 
variety of tasks than previously possible using consent-based computer 
vision datasets. Its combination of pixel-level annotations and attrib-
ute labels makes FHIBE to our knowledge the most comprehensively 
annotated fairness dataset currently available.

Moreover, we compared the utility of FHIBE as a fairness evaluation 
set with existing datasets. As discussed in the Methods, for each of the 
eight narrow model computer vision tasks that FHIBE was designed for, 
we evaluated commonly used models using FHIBE and pre-existing 
evaluation datasets (Supplementary Information F). The findings are 
discussed in the ‘Evaluation results’ section below.

Evaluation results
Bias discovery in narrow models
FHIBE’s diverse and comprehensive annotations provide both breadth 
and depth in fairness assessments, enabling the evaluation of models 
across a range of demographic attributes and their intersections. We 
examined the performance of a variety of pretrained narrow models—
across eight common computer vision tasks: pose estimation, person 
segmentation, person detection, face detection, face parsing, face 
verification, face reconstruction and face super-resolution—on FHIBE’s 
demographic groups and their intersections (that is, pronoun × age 

group × ancestry × skin tone). The exact methodology is described 
in the Methods.

Through our benchmarking analysis, we found that intersectional 
groups combining multiple sensitive attributes—including pronoun, 
age, ancestry and skin tone—experience the largest performance dis-
parities (Supplementary Fig. 21). Notably, despite the fact that skin 
tone is often used as a proxy for ancestry/race/ethnicity in fairness 
evaluations57, we find that intersections featuring both skin tone and 
ancestry have much greater disparities than those with only one of 
these attributes.

For each task, we also examined the intersectional groups for which 
the models showed the highest versus lowest disparity in performance. 
Note that, for this particular analysis, we considered only groups with 
at least ten subjects, and pairwise group comparisons were filtered 
using the Mann–Whitney U-test for statistical significance. To control 
for multiple comparisons, we applied Bonferroni correction58 by adjust-
ing the significance threshold based on the number of pairwise tests, 
therefore considering only pairs with a statistically significant difference 
(P < 0.05

number of pairwise tests
). Through this analysis (Extended Data Table 2 

and Supplementary Information K), we found that younger individuals 
(aged 18–29 years), those with lighter skin tones and those with Asian 
ancestry were more frequently among the groups that models per-
formed best on, whereas older individuals (aged 50–59 and 60+ years), 
those with darker skin tones and those with African ancestry appeared 
more often among the groups that models performed worst on. How-
ever, despite these high-level trends, there was variability across mod-
els and specific intersections. For example, for face detection, RetinaFace 
performed best for ‘she/her/hers × type I × Asia’ and worst for ‘he/him/
his × type II × Africa’, whereas MTCNN performed best for ‘she/her/
hers × type II × Africa’ and worst for ‘he/him/his × type IV × Europe’.

This variability highlights the importance of testing for intersec-
tional biases on a case-by-case basis, as bias trends can vary depending 
on the specific model–task combination. Overall, disparities likely 
arise from a combination of systemic biases—such as demographic 
under-representation—and task- or model-specific interactions with 
sensitive attributes. While some patterns align with broader structural 
inequalities, others reflect localized effects, emphasizing the need 
for nuanced and intersectional fairness assessments, which FHIBE’s 
extensive demographic annotations facilitate.

FHIBE further enables in-depth analyses of model performance 
disparities by identifying the specific features contributing to bias 
trends with greater granularity than what existing datasets facilitate. 
For example, we found that face-detection models showed consistently 
higher accuracy for individuals with she/her/hers pronouns compared 
with he/him/his pronouns (Supplementary Tables 14—16), a finding 
consistent with previous research59. Through our direct error modelling 
analysis, we used FHIBE’s extensive annotations to identify attributes 

Table 3 | Dataset comparison by geographical region and income level

FHIBE (%) CCv1 (%) CCv2 (%) FACET (%) COCO (%) MIAP (%)

Africa 44.7 0.0 0.0 2.8 3.0 1.7

Asia and Oceania 40.6 0.0 49.8 36.2 11.4 14.3

Europe 4.4 0.0 0.0 49.8 34.2 36.2

Latin America and Caribbean 4.2 0.0 42.5 3.5 3.1 5.0

North America 6.0 100.0 7.7 7.7 48.3 42.8

High-income economies 11.5 100.0 7.7 54.0 89.1 87.5

Upper-middle-income economies 14.5 0.0 50.5
45.0 10.5 12.0

Lower-middle-income economies 71.5 0.0 41.8

Low-income economies 0.3 0.0 0.0 0.9 0.4 0.5

Income groups are based on World Bank data. Geographical distributions for FACET, COCO and MIAP are estimates from a previous study78. These datasets combine upper-middle and 
lower-middle income levels into a single middle category. For the FHIBE dataset, the geographical distribution is derived from self-reported location annotations. Percentages for CCv1 and 
CCv2 are based on videos, while the other datasets use image counts.



Nature  |  Vol 648  |  4 December 12/4/2025  |  103

that statistically significantly contributed to this performance differ-
ence (Extended Data Figs. 3 and 4).

While many of the statistically significant attributes were not obvi-
ously related to gender (for example, visible keypoints, camera dis-
tance), lack of visible hair was a significant factor driving the gender 
disparity for RetinaFace (Extended Data Fig. 5). Further analysis con-
ditioned on headwear and qualitative image inspection revealed that 
no visible hair in ‘he/him/his’ images often indicated baldness, making 
face detection challenging. Lack of visible hair was not only less com-
mon among ‘she/her/hers’ images, but it also typically resulted from 
headwear closely fitted to the face that preserved clear facial contours, 
making the task easier. FHIBE can therefore be used to help to explain 
underlying causes of previously identified biases.

Using FHIBE, we also identified previously unidentified bias trends. 
For example, face parsing models performed better for younger indi-
viduals than for older individuals (Supplementary Table 18). Through 
our error pattern recognition analysis, we found that much of this 
disparity was attributable to the models’ particularly poor perfor-
mance for individuals with grey or white facial hair (Extended Data 
Fig. 7). For face verification, we conducted fairness evaluations using 
pretrained models—ArcFace60, CurricularFace61 and FaceNet62. The 
three mentioned models obtained lower accuracy for the ‘she/her/
hers’ pronoun subgroup (Supplementary Table 20), a disparity that we 
traced to greater hairstyle variability (Extended Data Fig. 8) within this 
group—a factor that was previously overlooked when using less detailed 
datasets for bias diagnosis. This level of granularity in identifying the 
sources of bias can help to inform approaches to bias mitigation. For 
example, in this case, rather than collecting more training data from 
individuals of specific demographics, which can exacerbate ethical 
concerns around the ‘hypervisibility’ faced by certain marginalized 
groups7, a developer could focus on ensuring their face verification 
model is robust to hairstyle variability.

Moreover, when assessing models using different observational 
datasets, conflicting bias trends often emerge. For example, in 
person-detection tasks, FHIBE found higher accuracy for individuals 
with darker skin tones, whereas FACET reported superior performance 
for lighter skin tones (Supplementary Tables 12 and 13). Leveraging 
FHIBE’s detailed annotations and our direct error modelling approach 
(Methods and Supplementary Information G), we identified confound-
ing factors such as body pose (for example, lying down), subject inter-
actions (for example, hugging/embracing), image aspect ratio and 
the number of visible keypoints (which indicate body occlusion) that 
significantly correlated with person-detection performance (Extended 
Data Figs. 5 and 6). To investigate these associations systematically, 
we applied a direct error modelling approach, using regression and 
decision trees to determine which features were linked to reduced 
model performance. In the case of faster-rcnn, our analysis identi-
fied the number of visible keypoints as a statistically significant fac-
tor in person-detection performance, with a higher count of visible 
keypoints leading to improved accuracy. When we analysed perfor-
mance disparities by skin tone within a subset of images with a high 
number of visible keypoints, we found no statistically significant 
differences in performance across skin tones. This suggests that 
most performance disparities are driven by cases in which the sub-
ject’s keypoints are not fully visible, probably due to occluded body  
features.

These findings highlight the importance of addressing relevant 
sources of model errors and can guide developers in refining their 
models to enhance fairness and accuracy. FHIBE’s extensive annota-
tions can provide valuable insights into the factors contributing to 
differences in fairness evaluation results across various benchmarks. 
FHIBE also enables developers to disentangle the source of bias among 
possible confounders. This is only possible with access to a rich set of 
accurate annotations, which FHIBE contains, but most comparable 
fairness evaluation datasets lack.

Bias discovery in foundation models
Large-scale, multimodal generative models, which learn associations 
between text and images, enable diverse tasks such as classification, 
image search, image segmentation, image captioning and VQA (answer-
ing questions about an image). However, the widespread adoption of 
these technologies has also amplified their potential for harm. Research 
has shown that these models can perpetuate existing social biases63, 
reinforce harmful stereotypes14,64, and marginalize or dehumanize 
under-represented groups65.

Existing benchmarks for vision–language models (VLMs) focus 
mainly on improving performance in tasks such as object recogni-
tion66, robustness67 or reasoning68, and less on evaluating ethical 
dimensions such as bias and fairness69. Similar to datasets used to test 
narrow models, those that aim to evaluate VLM biases are often based 
on repurposed, web-scraped data70,71 leading to potential data leakage 
problems, limited coverage of societal dimensions43,72 and reliance 
on synthetically generated data that do not capture the nuances of 
real-world contexts73.

We demonstrate FHIBE’s utility for evaluating VLM foundation mod-
els across a range of image comprehension and recognition tasks. In 
particular, we assess two popular models, CLIP74 and BLIP-275 (Methods 
and Supplementary Information H). We explored how pronoun and 
ancestry biases show up in general image understanding tasks like scene 
recognition (with CLIP) and open-ended VQA (with BLIP).

When asked to classify images using 16 provided gender-related 
prompts (the prompts are provided in Supplementary Information H), 
we found that CLIP was far more likely to assign a gender-neutral label 
(unspecified) to those with ‘he/him/his’ pronouns (0.69) than those 
with ‘she/her/hers’ pronouns (0.38), reinforcing the idea that male 
individuals are the default people. Moreover, CLIP’s perception of 
gender was strongly influenced by hairstyle, with individuals who did 
not conform to stereotypical hairstyles (for example, ‘he/him/his’ pro-
nouns and long hair) being frequently misgendered (Fig. 3a). We also 
found that CLIP had biased associations with other image attributes 
such as scene, disproportionately associating individuals of African 
ancestry with outdoor environments and linking those of African or 
Asian ancestry with rural settings (Fig. 3b,c).

Next, we assessed BLIP-2 in the VQA setting, prompting it with ques-
tions about the images with varying tones—positive, neutral or negative 
(the prompts are provided in Supplementary Information H). None 
of the prompts asked about or featured information about gender or 
ancestry. Nonetheless, we found that the model’s outputs still reflected 
biases based on gender and ancestry. For example, when asked why an 
individual is likeable, BLIP-2 frequently generated responses that attrib-
uted likability to gender, such as “because she is a woman” (Fig. 4a). As 
with CLIP, BLIP-2 was more likely to misgender individuals identified as 
‘she/her/hers’ (Fig. 4b). Neutral prompts (for example, asking what an 
individual’s occupation is) sometimes produced benign output text (for 
example, teacher), but other times yielded terms that reinforced harm-
ful stereotypes against specific pronoun and ancestry groups, such as 
prostitute, drug dealer and thief (Fig. 4c,d). Moreover, we found that 
negative prompts, for example, about what crimes an individual com-
mitted—which should yield a null response—elicited toxic responses 
at higher rates for individuals of African or Asian ancestry, those with 
darker skin tones and those identifying as ‘he/him/his’ (Fig. 4e–g).

Using FHIBE, we were therefore able to identify these previously 
undocumented biases. These observations underscore the persis-
tent biases in these models and highlight the need for bias mitigation 
strategies.

Discussion
FHIBE marks an inflection point in enabling the development of 
more responsible AI. Developers are able to evaluate and compare 
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bias in their models across many computer vision tasks without 
relying on non-consensually sourced datasets. One of the key con-
tributions of FHIBE is the implementation of many of the princi-
ples that have until now been advocated for only in responsible 
data curation, therefore paving the way for ethical data collection 
efforts going forward. Insights from the development of FHIBE also 
provide important learnings that can inform future directions for  
research.

Creating an ethics-driven human-centric dataset was challenging, 
as it required an investment into processes that are currently not the 
norm in the data-collection ecosystem. Overall, to arrive at the 10,318 
images for the initial launch of FHIBE, we collected a total of 28,703 
images from three data vendors, which cost nearly US$308,500 (aver-
age cost of US$10.75 per image). There were additional fixed costs of 

around US$450,000 for QA, legal services and the cost of building the 
data platform.

As this demonstrates, the emphasis on consent, fair compensation, 
rich annotations and global diversity made the data collection expen-
sive. Furthermore, developing and implementing best practices for 
data collection, ensuring data quality and analysis further required the 
work of 25 researchers, engineers and project managers who worked 
at least part-time on the project at various points over the project’s 
2–3 year lifespan, along with the extensive support of legal, privacy, 
IT and QA specialists.

At a time when there are growing calls for ethical data collection21,22 
and realization of the importance of consent and compensation for 
data rightsholders20, transparency around the costs of data collection 
is critical for the AI community. Among the 27 human-centric computer 
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Fig. 3 | Biases in CLIP predictions on FHIBE. a, Predicted label probabilities 
(rows) conditioned on ground-truth pronouns (columns) (left); CLIP more often 
assigns a gender-neutral ‘unspecified’ label to ‘he/him/his’ than to ‘she/her/hers’. 
Right, gender-classification error rates vary with both pronoun and hairstyle 
and are lowest for stereotypical pronoun–hairstyle combinations (for example, 
‘he/him/his’ with ‘short/no hair’). b, For indoor environments, masking the 
person increases the accuracy, whereas, for outdoor environments, masking 
decreases the accuracy. This suggests that CLIP may treat the presence of a 

person as a spurious cue for outdoor scenes, with the effect being particularly 
pronounced for individuals of African ancestry. c, Scene type predictions 
conditioned on ancestry. CLIP is more likely to predict rural environments for 
images containing individuals of African or Asian ancestry. The numbers on 
each bar denote the group size (bottom) and the corresponding probability 
estimate (top), indicating that perceived rural associations are stronger for 
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vision datasets that we compare FHIBE with, only the Chicago Face 
Database27 provides information about the costs of data collection (they 
compensated participants US$20, and US$25 was randomly awarded to 
raters who completed a survey—compensation was given as gift cards). 
Data collection not featuring human subjects and personal informa-
tion might be more cost-effective (for example, GeoDE76 cost US$1.08 
per image for a 61,940-image dataset, not including researcher time). 
However, overall, the costs of consensual, diverse and fairly compen-
sated data collection remain high considering the large amounts of 
data needed to train state of the art AI models77.

We hope that the practical learnings from FHIBE will help to inform 
future data collection efforts and encourage more research and 
investment into developing more scalable ethical data collection 

methods. As FHIBE is the first of its kind, future efforts can leverage 
our project as a starting point to substantially reduce the cost and time 
required, but there is still a need for further research on how to achieve 
ethical data collection methodologies at a scale that is suitable for  
AI training.

Aside from cost, compared with web-scraped datasets, there are 
some additional limitations to consensually collected datasets. Such 
datasets exhibit less visual diversity compared with web-scraped 
ones. As shown in Fig. 5, FHIBE’s pixel-level annotations are more 
standardized, that is, subjects are generally positioned closer to 
the camera and centred within the frame. FHIBE exhibits moderate 
segmentation complexity across a range of difficulty levels, but key-
points are predominantly visible and consistently distributed (Fig. 5). 
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These factors probably contributed to models performing better on 
FHIBE than on web-scraped evaluation datasets for many tasks (Sup-
plementary Information F). That said, FHIBE is much more visually 
diverse than other consent-based datasets, vastly surpassing both 
CCv1 and CCv2 (Table 4). Thus, FHIBE helps to bridge the gap between 
non-consensually and consensually sourced datasets, but future work 
should explore how to further close this gap.

Furthermore, crowdsourcing images made it difficult to verify that 
the person submitting the image was the same as the image subject. 
Through our automatic and manual quality checks, including reverse 
image search and examining consent forms and submission infor-
mation, we identified possibly suspicious patterns and removed the 
corresponding images (Methods and Supplementary Information I). 
It is possible that core ethical considerations, such as fair compen-
sation, increased the potential for fraudulent actors. For example, 
vendors generally offer higher compensation to demographic and 
geographical groups that are more difficult to collect consensual data 
from. This creates greater incentives for individuals to misrepresent 
themselves (despite the risk of being deplatformed by the vendor), to 
receive higher payments. It is therefore crucial for dataset curators to 
consider how their approaches to collecting diverse datasets ethically 
may attract potentially fraudulent actors. The potential for fraudulent 
actors is yet another reason for the importance of consent revocation 
and redaction in the context of ethical dataset collection. Future work 
should further consider the benefits and shortcomings of different 
data-collection approaches.

Despite the challenges of implementing a fair human-centric image 
benchmark, the FHIBE showcases that implementing core ethical con-
siderations in practice is possible. We hope FHIBE will establish a new 
standard for responsibly curated data for AI systems by integrating 
comprehensive, consensually sourced images and annotations. FHIBE 
facilitates nuanced bias evaluations while avoiding many of the ethical 
concerns typical of modern datasets, particularly related to privacy 
and IP. Evaluations using FHIBE highlight pressing issues, such as per-
formance disparities and stereotype reinforcement by AI models. By 
implementing responsible data practices and enabling the computer 
vision community to test their models for bias, FHIBE can help to enable 
the development of more inclusive and trustworthy AI systems.
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Methods

Ethics statement: participants and consent/recruitment 
procedures
Data collection commenced after 23 April 2023, following Institutional 
Review Board approval from WCG Clinical (study number 1352290). All 
of the participants have provided their informed consent to the use of 
their data, and those who were image subjects further consented to 
have their identifiable images published.

We developed an informed consent form designed to comply with 
the EU’s GDPR46 and other similarly comprehensive data privacy regula-
tions. Vendors were required to ensure that all image subjects (that is, 
both primary and secondary) provided signed informed consent forms 
when contributing their data. Vendors were also required to ensure that 
each image was associated with a signed copyright agreement to obtain 
the necessary IP rights in the images from the appropriate rightsholder. 
Only individuals above the age of majority in their country of residence 
and capable of entering into contracts were eligible to submit images.

All of the image subjects, regardless of their country of residence, 
have the right to withdraw their consent to having their images 
included in the dataset, with no impact to the compensation that they 
received for the images. This is a right that is not typically provided 
in pay-for-data arrangements nor in many data privacy laws beyond 
GDPR and GDPR-inspired regimes.

Data annotators involved in labelling or QA were given the option 
to disclose their demographic information as part of the study and 
were similarly provided informed consent forms giving them the right 
to withdraw their personal information. Some data annotators and 
QA personnel were crowdsourced workers, while others were vendor 
employees.

To validate English language proficiency, which was needed to under-
stand the project’s instructions, terms of participation, and related 
forms, participants (that is, image subjects, annotator crowdworkers 
and QA annotator crowdworkers) were required to answer at least two 
out of three randomly selected multiple-choice English proficiency 
questions correctly from a question bank, with questions presented 
before project commencement. The questions were randomized to 
minimize the likelihood of sharing answers among participants. An 
example question is: “Choose the word or phrase which has a similar 
meaning to: significant” (options: unimportant, important, trivial).

To avoid possibly coercive data-collection practices, we instructed 
data vendors not to use referral programs to incentivize participants 
to recruit others. Moreover, we instructed them not to provide par-
ticipants support (beyond platform tutorials and general technical 
support) in signing up for or submitting to the project. The motivation 
was to avoid scenarios in which the participants could feel pressured or 
rushed through key stages, such as when reviewing consent forms. We 
further reviewed project description pages to ensure that important 
disclosures about the project (such as the public sharing and use of the 
data collected, risks, compensation and participation requirements) 
were provided before an individual invested time into the project.

Image collection guidelines
Images and annotations were crowdsourced through external vendors 
according to extensive guidelines that we provided. Vendors were 
instructed to only accept images captured with digital devices released 
in 2011 or later, equipped with at least an 8-megapixel camera and capa-
ble of recording Exif metadata. Accepted images had to be in JPEG or 
TIFF format (or the default output format of the device) and free from 
post-processing, digital zoom, filters, panoramas, fisheye effects and 
shallow depth-of-field. Images were also required to have an aspect 
ratio of up to 2:1 and be clear enough to allow for the annotation of facial 
landmarks, with motion blur permitted only if it resulted from subject 
activity (for example, running) and did not compromise the ability to 
annotate them. Each subject was allowed to submit a maximum of ten 

images, which had to depict actual subjects, not representations such 
as drawings, paintings or reflections.

Submissions were restricted to images featuring one or two consen-
sual image subjects, with the requirement that the primary subject’s 
entire body be visible (including the head, and a minimum of 5 body 
landmarks and 3 facial landmarks identifiable) in at least 70% of the 
images delivered by each vendor, and the head visible (with at least 3 
facial landmarks identifiable) in all images. Vendors were also directed 
to avoid collecting images with third-party IP, such as trademarks and 
landmarks.

To increase image diversity, we requested that images ideally be 
taken at least 1 day apart and recommended that images submitted of 
a subject were taken over as wide a time span as possible, preferably at 
least 7 days apart. If images were captured less than 7 days apart, the 
subject had to be wearing different clothing in each image, and the 
images had to be taken in different locations and at different times 
of day. Our instructions to vendors requested minimum percentages 
for different poses to enhance pose diversity, but we did not instruct 
subjects to submit images with specific poses. Participants were per-
mitted to submit previously captured images provided that they met 
all requirements.

Annotation categories and guidelines
We provided extensive annotation guidelines to data vendors that 
included examples and explanations. A complete list of the annota-
tions, their properties (including whether they were multiple-choice), 
categories and annotation methods is provided in Supplementary 
Information A.

A key component of our project was that most annotations were 
self-reported by the image subjects as they were best suited to provide 
accurate information about subject demographics and physical char-
acteristics, interactions depicted and scene context. The only annota-
tions that were not self-reported were those that could be objectively 
observed from the image itself and would benefit from the consistency 
offered by professional annotators (that is, pixel-level annotations, 
head pose and camera distance, as defined by the size of an image sub-
ject’s face bounding box). We also provided examples and guidance for 
subject–subject interactions, subject–object interactions and head 
pose based on the request of our data vendors due to ambiguities in 
those labels.

We included open-ended, free text options alongside closed-ended 
responses, enabling subjects to provide input beyond predefined cat-
egories. These open-ended responses were coded as ‘Not Listed’. For 
privacy reasons, we do not report the specific text provided by the 
subjects. This approach enabled subjects to express themselves more 
fully79,80, resulting in more accurate data and informing better ques-
tion design for future data collection. Given the mutability of most 
attributes, annotations were collected on a per-image basis, except 
for ancestry.

For the pixel-level annotations, face bounding boxes were annotated 
following the protocol used for the WIDER FACE dataset81, a commonly 
used face detection dataset. Keypoint annotations were based on the 
BlazePose topology82, a composite of the COCO40, BlazePalm83 and 
BlazeFace84 topologies. While the 17-keypoint COCO topology is widely 
used in computer vision, it lacks definitions for hand and foot keypoints, 
making it less suitable for applications such as fitness compared to Blaz-
ePose. For person segmentation, we defined 28 semantic segmentation 
categories based on the most comprehensive categorical schemas for 
this task, including MHP (v.2.0)85, CelebAMask-HQ86 and Face Synthet-
ics87. Finally, person bounding boxes were automatically derived from 
human segmentation masks by enclosing the minimum-sized box that 
contained the entirety of each person’s segmentation mask.

Each annotator, QA annotator and QA specialist was assigned a 
unique identifier to link them to each annotation that they provided 
or reviewed, as well as any demographic information they chose to 
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disclose. For annotation tasks involving multiple annotators, we pro-
vided the individual annotations from each annotator, rather than 
aggregated data. These annotations included those made before any 
vendor QA and those generated during each stage of vendor QA.

For our analyses, images with multiple annotations within a single 
attribute category (for example, ancestry subregion) are included in all 
relevant attribute value categories. For example, if an image subject is 
annotated with multiple ancestry subregions, the subject is counted in 
each of those subregions during analyses. Nested annotations—such as 
when a broad category is selected (for example, ‘Africa’ for ancestry)—
are handled by counting the image subject in all corresponding subre-
gions (for example, each subregion of ‘Africa’).

Quality control and data filtering
Quality control for images and annotations was conducted by both 
the vendors and our team. Vendor QA annotators handled the first 
round of checking images, annotations, and consent and IPR forms. 
For non-self-reported annotations, vendor QA workers were permitted 
to modify the annotation if incorrect. For imageable attributes (such 
as apparent eye colour, facial marks, apparent head hair type), they 
could provide their own annotations if they believed the annotations 
were incorrect, but this would not overwrite the original self-reported 
annotation (we report both annotations). Vendors were instructed 
not to QA non-imageable attributes (such as pronouns, nationality, 
natural hair colour), with the exception of height and weight if there 
were significant differences in the numbers for the same subject in 
images taken 48 h or less apart.

Moreover, we developed and ran various automated and manual 
checks to further examine the images and annotations delivered by the 
vendors. Our automated checks verified image integrity (for example, 
readability), resolution, lack of post-processing artifacts and suffi-
cient diversity among images of the same subject. They also assessed 
annotation reliability by comparing annotations to inferred data (for 
example, verifying that a scene labelled as ‘outdoor’ corresponds with 
outdoor characteristics in the image), checked for internal consistency 
(for example, ensuring body keypoints are correctly positioned within 
body masks), identified duplicates and checked the images against 
existing images available on the Internet. Moreover, the automated 
testing checked for CSAM by comparing image hashes against the 
database of known CSAM maintained by the National Center for Miss-
ing & Exploited Children (NCMEC).

Images containing logos were automatically detected using a logo 
detector88 and the commercial logo detection API from Google Cloud 
Vision89. They were then excluded from FHIBE to avoid trademark 
issues. We used a detection score threshold of 0.6 to eliminate identified 
bounding boxes with low confidence, and the positive detection results 
were reviewed and filtered manually to avoid false positives. However, 
despite these efforts, logo detection remains a complex challenge 
due to the vast diversity of global designs, spatial orientation, partial 
occlusion, background artifacts and lighting variations. Even manual 
review can be inherently limited, as QA teams cannot be familiar with 
every logo worldwide and often face difficulty distinguishing between 
generic text and logos. Our risk-based approach to logo detection and 
removal was informed by the relatively low risk of IP harms posed by the 
inclusion of logos in our dataset. The primary concern is that individu-
als might mistakenly perceive a relationship between our dataset and 
the companies whose logos appear. However, this is mitigated by the 
academic nature of this publication and the clear disclosure of author 
and contributor affiliations.

Manual checks on the data were conducted predominantly by our 
team of QA specialists, as well as by authors. The QA specialists were 
a team of four contractors who worked with the authors to evaluate 
the quality of vendor-delivered data, and conduct corrections where 
needed. The QA specialists had a background in ML data annotation and 
QA work, and received training and extensive documentation regarding 

the quality standards and requirements for images and annotations 
for this project. Furthermore, they remained in direct contact with our 
team throughout the project, ensuring that they could clarify quality 
standards as needed.

The manual checks focused on ensuring the accuracy of annota-
tions for imageable attributes, such as hair colour, scene context and 
subject interactions. Non-imageable attributes, representing social 
constructs, such as pronouns or ancestry, were not part of the visual 
content verification. Moreover, even though the probability of objec-
tionable content (for example, explicit nudity, violence, hate symbols) 
was low given our sourcing method, instructions to data subjects and 
QA from vendors, we took the additional step of manually reviewing 
each image for such content given the public nature of the dataset.

Overall, to arrive at the 10,318 images for the initial launch of FHIBE, 
we collected a total of 28,703 images from three data vendors. As 
the result of initial internal assessments, a set of 6,868 images were 
excluded due to issues with data quality and adherence to project speci-
fications. Another 5,855 images were excluded for consent or copyright 
form issues. Of the remaining 15,980 images collected from vendors, 
approximately 0.07% were excluded for minor annotation errors (for 
example, missing skin colour annotations), 0.17% for offensive content 
(in free-text or visual content) and 0.01% for other reasons (for exam-
ple, duplicated subject IDs) before the suspicious-pattern exclusions 
described in the following section.

Detection and removal of suspicious images
It was difficult to determine whether the people who submitted the 
images were the same as the subjects in the image while respecting 
the privacy of the subjects. There can be fraudulent actors who sub-
mit images of other people without their consent to be compensated 
by data vendors. Given the public and consent-driven nature of our 
dataset, we did not rely exclusively on vendors to detect and remove 
suspicious images. We used a combination of automated and manual 
checks to detect and remove images where we had reason to suspect 
the data subject(s) might not be the individual who submitted the 
image. Combining automated and manual checks, we removed 3,848 
images from 1,718 subjects from the dataset.

For automated checks, we used Web Detect from Google Cloud Vision 
API89 to identify and exclude images that could have been scraped from 
the Internet. This was a conservative check as images found online could 
still have been consensually submitted to our project by the image 
subject. However, given the importance of consent for our project, 
and the use of the dataset for evaluation, we excluded these images 
out of an abundance of caution.

This check resulted in removing 321 images, across 70 subjects, as 
we removed all the images for a given subject, as long as a single image 
was found online. However, there were some limitations to this auto-
mated approach. Vision API had a high false-positive rate: 62% for our 
task (that is, images that are visually similar, due to scene elements or 
popular landmarks). Google Web Detect returned limited results for 
images containing people and, in some cases, the returned matches 
focused on clothing items or the landmark. Furthermore, some social 
media images may not have been indexed by the Vision API because the 
websites required authentication.

We therefore also performed manual review methods for removing 
potentially suspicious images. Manual reviewers were instructed to 
track potentially suspicious patterns during their review of images 
and consent/copyright forms. For example, they were instructed to 
examine inconsistencies between self-reported and image metadata 
(for example, landmarks that contradicted the self-reported location). 
These patterns were later reviewed for exclusion by the research team.

Moreover, one of our QA specialists developed a manual process to 
find additional online image matches. The QA specialist used Google 
Lens to identify the location of the image. For images with distinc-
tive locations (for example, not generic indoor locations or extremely 



popular tourist locations), the QA specialist performed a time-limited 
manual search to try to find image matches online. While we were not 
able to apply this time-intensive process to every image, using this 
approach, we were able to assess the risk level of different qualitative 
suspicious patterns and make additional exclusions.

After these exclusions, 2,017 subjects remained. From these sub-
jects, we randomly sampled a set of 400 subjects and conducted the 
above manual QA process. In total, 14 subjects were found online while 
inspecting this sample, and we excluded them from the dataset. On the 
basis of this analysis, we estimated a baseline level of suspiciousness 
of 3.5 ± −1.7% with 95% confidence.

It is important to note that removing suspicious images also had 
an impact on the demographic distribution of subjects in the dataset 
(Supplementary Information I). We found that excluded images were 
more likely to feature individuals of older ages, with lighter skin tones 
and of Europe/Americas/Oceania ancestry. While it is not possible for 
us to determine the true underlying reason why some people might 
have submitted fraudulent images, we can speculate that some of the 
ethical design choices of our dataset may have inadvertently incentiv-
ized fraudulent behaviours. For example, requiring vendors to pay at 
least the applicable local minimum wage may have encouraged peo-
ple to falsely claim to be from regions with higher wages, submitting 
images from the Internet taken in those locations. Similarly, in our 
pursuit of diversity, our vendors found certain demographics were 
more difficult to obtain images of (for example, people of older ages). 
As such, higher compensation was offered for those demographics, 
increasing the incentives to fraudulently submit images featuring those 
demographics.

The priorities of our data collection project also made fraud more 
feasible and difficult to detect. Given that FHIBE is designed for fair-
ness evaluation, we sought to maximize visual diversity and collect 
naturalistic (rather than staged) images. As a result, we opted for a 
crowd-sourcing approach and allowed subjects to submit past photos. 
Compared with in-person data collection or bespoke data collection in 
which the setting, clothing, poses or other attributes might be fixed or 
specified, it was more difficult for our project to verify that the images 
were intentionally submitted by the data subject for our project. We 
therefore encourage dataset curators to consider how their ethical 
goals may inadvertently attract fraudulent submissions.

Annotation QA
We verified the quality of both pixel-level annotations and imageable 
categorical attribute annotations using two methods. First, we com-
pared the vendor-provided annotations with the average annotations 
from three of our QA specialists on a randomly sampled set of 500 
images for each annotation type. For pixel-level annotations, agree-
ment between the collected annotations and the QA specialist anno-
tations was above 90% (Supplementary Information E), at a similar or 
higher level as related works90–92, showing the robustness and quality 
of our collected annotations.

Second, we assessed intra- and inter-vendor annotation consist-
ency by obtaining three sets of annotations for the same 70 images 
from each vendor. Within each vendor, each image was annotated and 
reviewed three times by different annotators. To ensure independent 
assessments, no individual annotator reviewed the same annotation 
for a given image instance, resulting in mutually exclusive outputs from 
each labelling pipeline. For dense prediction annotations, intra- and 
inter-vendor agreement is above 90%, confirming a high quality of col-
lected annotations. For attribute annotations, intra-vendor agreement 
is above 80% and inter-vendor agreement is at 70%, which indicates 
that they are more noisy labels than the dense prediction ones (Sup-
plementary Information E).

Regarding metrics for these comparisons, for bounding boxes, we 
computed the mean intersection over union between the predicted 
and ground truth bounding boxes. For keypoints, we computed object 

keypoint similarity93. For segmentation masks, we computed the 
Sørensen–Dice coefficient94,95. For categorical attributes (for example, 
hair type, hairstyle, body pose, scene, camera position), we computed 
the pairwise Jaccard similarity coefficient96 and then the average. Using 
these analyses, we were able to verify the consistency of the annotations 
between vendors and our QA specialists, within individual vendors and 
between different vendors.

Privacy assurance
We used a text-guided, fine-tuned stable diffusion model47 from 
the HuggingFace Diffusers library97 to inpaint regions identified by 
annotator-generated bounding boxes and segmentation masks con-
taining incidental, non-consensual subjects or personally identifiable 
information (for example, license plates, identity documents). The 
model was configured with the following parameters: (1) text prompt: 
“a high-resolution image with no humans or people in it”; (2) negative 
text prompt: “human, people, person, human body parts, android, 
animal”; (3) guidance scale: randomly sampled from a uniform distri-
bution, w ~ U(12, 16); (4) denoising steps: 20; and (5) variance control: 
η = 0, enabling the diffusion model to function as a denoising diffusion 
implicit model98.

We also manually reviewed the images to ensure the correct removal 
of personally identifiable information and identified any redaction arti-
facts. Around 10% of images had some content removed and in-painted. 
To evaluate any potential loss in data use, we compared performance 
on a subset of tasks (i.e., pose estimation, person segmentation, person 
detection and face detection) before and after removal and in-painting. 
No significant performance differences were observed.

To further address possible privacy concerns with the public disclo-
sure of personal information, a subset of the attributes of consensual 
image subjects (that is, biological relationships to other subjects in a 
given image, country of residence, height, weight, pregnancy and dis-
ability/difficulty status) are reported only in aggregate form. Moreover, 
the date and time of image capture were coarsened to the approximate 
time and month of the year. Subject and annotator identifiers were 
anonymized, and Exif metadata from the images were stripped.

Consent revocation
We are committed to upholding the right of human participants to 
revoke consent at any time and for any reason. As long as FHIBE is pub-
licly available, we will remove images and other data when consent is 
revoked. If possible, the withdrawn image will be replaced with one that 
most closely matches key attributes, such as pronoun, age group and 
regional ancestry. To the extent possible, we will also consider other 
features that could impact the complexity of the image for relevant 
tasks when selecting the closest match.

FHIBE derivative datasets
We release both the original images and downsampled versions in PNG 
format. The downsampled images were resized to have their largest side 
set to 2,048 pixels while maintaining the original aspect ratio. These 
downsampled versions were used in our analyses to prevent memory 
overflows when feeding images to the downstream models.

FHIBE also includes two face datasets created from the original 
images (that is, not the downsampled versions), both in PNG format: a 
cropped-only set and a cropped-and-aligned set. These datasets feature 
both primary and secondary subjects. For the cropped-and-aligned 
set, we followed a procedure similar to existing datasets99,100 by crop-
ping oriented rectangles based on the positions of two eye landmarks 
and two mouth landmarks. These rectangles were first resized to 
4,096 × 4,096 pixels using bilinear filtering and then downsampled to 
512 × 512 pixels using Lanczos filtering101. Only faces with visible eye and 
mouth landmarks were included in the final cropped-and-aligned set.

For the cropped-only set, facial regions were directly cropped 
based on the face bounding box annotations, with each bounding 
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box enlarged by a factor of two to capture all necessary facial pixels. 
This set includes images with resolutions ranging from 85 × 144 to 
5,820 × 8,865 pixels. If facial regions extended beyond the original 
image boundaries, padding was applied using the mean value along 
each axis for both face derivative datasets.

Datasets for fairness evaluation
We evaluated FHIBE’s effectiveness as a fairness benchmarking dataset 
by comparing it against several representative human-centric data-
sets commonly used in the computer vision literature. These data-
sets were selected based on their relevance to fairness evaluation, the 
availability of demographic annotations, and/or their use in previous 
fairness-related studies. Our analysis is limited to datasets that are 
publicly available; we did not include datasets that have been discon-
tinued, like the JANUS program datasets (IJB-A, IJB-B, IJB-C, IJB-D)102. 
The results are shown in Supplementary Information F.

COCO is constructed from the MS-COCO 2014 validation split40, 
COCO Caption Bias103 and COCO Whole Body104 datasets. We used 
the images and annotations from the MS-COCO 2014 validation set, 
and added the perceived gender and skin tone (dark, light) annota-
tions from COCO Caption Bias, excluding entries for which the label 
was ‘unsure’. We then used COCO Whole Body to filter the dataset for 
images containing at least one person bounding box. After filtering, 
this dataset contained 1,355 images with a total of 2,091 annotated 
person bounding boxes.

FACET24 is a benchmark and accompanying dataset for fairness evalu-
ation, consisting of 32,000 images and 50,000 subjects, with annota-
tions for attributes like perceived skin tone (using the Monk scale105), 
age group and perceived gender. For our evaluations, we used 49,500 
person bounding box annotations and 17,000 segmentation masks, 
spread across 31,700 images.

Open Images MIAP42 is a set of annotations for 100,000 images from 
the Open Images Dataset, including attributes such as age presen-
tation and gender presentation. In our evaluations, we used the test 
split, excluding images for which the annotations of age or gender 
are unknown, as well as the ‘younger’ category—to ensure that only 
adults were included in the evaluation. With this filtering, we used 
a set of 13,700 images with 36,000 associated bounding boxes and  
masks.

WiderFace81 is a face detection benchmark dataset containing images 
and annotations for faces, including the attributes perceived gender, 
age, skin tone, hair colour and facial hair. We used the validation split 
in our evaluations after excluding annotations for which perceived 
gender, age and skin tone were marked as ‘Not Sure’. After the filtering, 
we used a set of 8,519 face annotations across 2,856 files.

CelebAMask-HQ86 consists of 30,000 high-resolution face images of 
size 512 × 512 from the CelebA-HQ dataset, which were annotated with 
detailed segmentation of facial components across 19 classes. From 
this dataset, we used the test split in our evaluations, consisting of 
2,824 images with binarized attributes for age, skin colour and gender.

CCv1106 contains 45,186 videos from 3,011 participants across five US 
cities. Self-reported attributes include age and gender, with trained 
annotators labelling apparent skin tone using the Fitzpatrick scale. 
For dataset statistics, we extracted a single frame per video. For Vendi 
score computation, we used 10 frames per video.

CCv226 contains 26,467 videos from 5,567 participants across seven 
countries. Self-reported attributes include age, gender, language, dis-
ability status and geolocation, while annotators labelled skin tone 
(Fitzpatrick and Monk scales), voice timbre, recording setups and 
per-second activity. For dataset statistics, we extract a single frame 
per video. For Vendi score computation, we use three frames per video.

IMDB-WIKI107 is a dataset of public images of actors crawled from 
IMDB and Wikipedia. The images were captioned with date taken such 
that age could be labelled. From this dataset, we randomly sampled 10% 
to use for face verification task, resulting in 17,000 images.

Narrow models for evaluation
To assess the use of FHIBE and FHIBE face datasets, we compared the 
performance of specialized narrow models (spanning eight classic 
computer vision tasks) using both FHIBE and pre-existing benchmark 
datasets as listed above. As FHIBE is designed only for fairness evalua-
tion and mitigation, we did not train any models from scratch. Instead, 
we evaluated existing, pretrained state-of-the-art models on our dataset 
to assess their performance and fairness. The results are shown in Sup-
plementary Information F.

Pose-estimation models aim to locate face and body landmarks in 
cropped and resized images derived from ground truth person bound-
ing boxes, following108–110. For this task, we used Simple Baseline108, 
HRNet109 and ViTPose110, all of which were pretrained on the MS-COCO 
dataset40.

Person-segmentation models generate segmentation masks that 
label each pixel of the image with specific body parts or clothing regions 
of a person. For this task, we used Mask RCNN111, Cascade Mask RCNN112 
and Mask2Former113, all of which were trained on MS-COCO dataset40.

Person-detection models identify individuals from images by relying 
on object detection models, retaining only the outputs for the class 
‘person’. For this task, we used DETR114, Faster RCNN115, Deformable 
DETR116 and DDOD117 with the ResNet-50 FPN115 backbone, all of which 
were trained on MS-COCO dataset40.

Face-detection models locate faces in images by predicting bound-
ing boxes that encompass each detected face. For this task, we used 
the MTCNN118 model trained on VGGFaces2119 and the RetinaFace120 
model trained on WiderFace81 using publicly available source code121,122.

Face-segmentation models generate pixel-level masks that clas-
sify facial regions into specific facial features (such as eyes, nose, 
mouth or skin) or background, enabling detailed facial analysis and 
manipulation. For this task, we used the DML CSR123 model trained on 
CelebAMask-HQ86.

Face-verification models determine whether two face images belong 
to the same person by comparing their facial features against a preset 
similarity threshold. For extracting facial features, we used FaceNet62 
trained on VGGFaces2119, and ArcFace60 and CurricularFace61, both 
trained on refined MS-Celeb-1M124, using publicly available implemen-
tations61,121,125.

Face-reconstruction models encode facial images into latent 
codes and decode these codes back into images, enabling controlled 
manipulation of facial attributes. For this task, we used ReStyle126 
applied over e4e127 and pSp128, and trained on FFHQ99.

Face super-resolution models generate high-resolution facial images 
from low-resolution inputs, enhancing facial details and overall image 
quality. For this task, we used GFP-GAN129 and GPEN130, trained on 
FFHQ99.

Narrow model evaluation metrics
We used the standard metrics reported in the literature to assess the 
performance of the narrow models on different tasks.

For pose estimation, we reported the percentage correct keypoints 
at a normalized distance of 50% of head length (PCK@0.5)131, which 
measures the portion of predicted landmarks (keypoints) falling within 
0.5 × head-length radius from their true positions.

For person segmentation, person detection, and face detection, 
we reported the average recall across intersection over union (IoU) 
thresholds ranging [0.5, 0.95] with step size 0.05, to assess the average 
detection completeness of the models across multiple IoU thresholds.

For face segmentation, we reported the average F1 score (that is, the 
Sørensen–Dice coefficient94,95) across all segmentation mask catego-
ries, where F1 measures the intersection between the predicted and 
ground truth masks relative to their average size.

For face verification, we sampled image pairs of the same person 
(positive) and different people (negative) within each demographic 



subgroup. For each subgroup, we reported true acceptance rate (TAR) 
at a false acceptance rate (FAR) of 0.001. TAR@FAR = 0.001 measures 
the proportion of correctly accepted positive pairs when classification 
threshold is set to allow only 0.1% incorrectly accepted negative pairs.

For face reconstruction and face super-resolution, we reported 
learned perceptual image patch similarity132, which evaluates the per-
ceived visual similarity between reference image Iref and generated 
image Igen by comparing their feature representations extracted by 
a pretrained VGG16133 model.

For face reconstruction, we also assessed perceptual quality using 
peak signal-to-noise ratio and measured identity preservation using 
cosine similarity between facial embeddings of Iref and Igen extracted 
by a CurricularFace model61.

Dataset diversity
To compare FHIBE’s visual diversity with other datasets, we used the 
Vendi Score134,135, which quantifies diversity using a similarity function.

To construct the similarity matrix K, we first extracted image features 
(embeddings) using the self-supervised SEER136 model, which exhibits 
strong expressive power for vision tasks. We then constructed K by 
computing the cosine similarity between every feature pair. For extract-
ing feature embeddings with SEER, all images are pre-processed using 
the ImageNet protocol: rescaling to 224 × 224 and applying z-score 
normalization using the ImageNet per-channel mean and s.d.

Bias discovery in narrow models
We tested and compared FHIBE’s capabilities for bias diagnosis using 
a variety of methods.

Benchmarking analysis. For this analysis, we evaluated FHIBE on seven 
(note that for this analysis we excluded face verification owing to the  
inability to compute per-image scores for that task) different down-
stream computer vision tasks: pose estimation, person segmentation, 
person detection, face detection, face parsing, face reconstruction 
and face super-resolution. For each task and its respective models, we 
obtained a performance score for each image and subject, enabling 
us to conduct a post hoc analysis to explore the relationship between 
labelled attributes and performance.

For every task and model, we performed the following analyses. For 
each annotation attribute (for example, hair colour), we first isolated 
individual attribute groups (for example, blond, red, white). For each 
group, we compiled a set of performance scores (for example, scores 
for all subjects with blond hair, red hair or white hair). Only groups with 
at least ten subjects were considered in the analysis. We next performed 
pairwise comparisons (for example, blond versus red, blond versus 
white) using the Mann–Whitney U-test to determine whether the groups 
had similar median performance scores (null hypothesis, two-tailed). 
To control for multiple comparisons, we applied the Bonferroni cor-
rection58 by adjusting the significance threshold based on the number 
of pairwise tests. For pairs with a statistically significant difference 
(P < 0.05

number of pairwise tests
), we identified the groups with the lowest and 

highest median scores as the worst group and best group, respectively, 
and computed the min–max group disparity, D, between them:

D D= 1 −
MED(worst group)
MED(best group)

, ∈ [0, 1],

where MED(g) denotes the median performance score for group g. A 
value D → 0 indicates minimal disparity, while D → 1 indicates maximal 
disparity. We repeated this process for each attribute, identifying group 
pairs with statistically significant disparities and their corresponding 
values. For each attribute, we selected the pair with the highest disparity.

Direct error modelling. Using this approach, we aimed to examine 
which features were associated with reduced model performance 

using regression analysis. Although regression analysis is widely used 
to identify underlying relationships within datasets, its application 
to image data has traditionally been limited due to the lack of exten-
sive structured annotations. However, the comprehensive scope and 
detail of the FHIBE annotations enabled us to effectively apply this 
method and achieve meaningful results. For each task and model, we 
predicted the model’s performance on individual images as the target 
variable. To this end, we collected, processed and extracted a range of 
annotations related to both images and subjects, including features 
derived from pixel-level annotations, such as the number of visible 
keypoints or visible head hair, or the absence of it (categorized as the 
binary attribute ‘bald’), which served as predictor variables. We used 
decision trees and random forests—an ensemble of decision trees—due 
to their interpretability, modelling power and low variance. We used 
the available implementation in the scikit-learn v.1.5.1 library for both 
of these models. Feature importance was obtained from the random 
forests model by assessing how each variable (for example, body pose) 
contributed to reducing variance when constructing decision trees, 
helping to identify the most predictive features. We then identified 
the most significant features (top six in most experiments) using the 
elbow method137. These selected features were then used in a decision 
tree model to assess the direction of their contribution to prediction—
determining whether higher feature values are associated with better 
or worse model performance. To assess the robustness and statistical 
significance of observed differences across subgroups, we conducted 
bootstrap resampling with 5,000 iterations estimating standard errors. 
This approach enabled us to evaluate differences across groups even 
within smaller intersectional subgroups.

Error pattern recognition. We used association rule mining, a method 
frequently used in data mining to identify relationships between vari-
ables within a dataset. We applied association rule mining to identify 
attribute values that frequently co-occur with low performance. This 
approach enabled us to systematically identify and analyse patterns of 
bias within the model’s outputs. We used the FP-growth algorithm138. 
After obtaining the frequently occurring rules, we identified the attrib-
utes that are potential modes of error and investigated them further. 
We did this by studying the error disparities across the unique values 
of the attribute and evaluating its effect in conjunction with the sensi-
tive attributes.

For face verification, we modified the protocol described above in 
the ‘Narrow model evaluation metrics’ section. Given that we wanted to 
look at the whole dataset, unconstrained to specific attributes, positive 
and negative pairs were computed using all face images from the FHIBE 
face dataset. All possible positive pairs were computed (15,474 pairs), 
while all negative pairs were sampled with the constraint as described 
previously139 to extract hard pairs: the gallery and probe images had 
the same pronoun, and their skin colour differed by no more than one 
of the six possible levels, yielding 4,945,896 pairs.

Bias discovery in foundation models
Our analysis focuses on two foundation models: CLIP and BLIP-2. CLIP74 
is a highly influential vision-language model that is widely recognized 
for its applications in zero-shot classification and image search. BLIP-275 
advances vision–language alignment by using a captioning and filtering 
mechanism to refine noisy web-scraped training data, thereby enhanc-
ing performance in image captioning, VQA and instruction following.

CLIP. We used the official OpenAI CLIP model74. We analysed CLIP in 
an open-vocabulary zero-shot setting to examine the model’s biases 
towards different image concepts, such as demographic attributes 
or image concepts (for example, scene). For each value of the given  
attribute, we presented four distinct text prompts. These prompts were 
intentionally varied in wording to reduce potential bias or sensitivity to 
specific phrasing. The prompts were standardized, clear and consistent 
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across various values to minimize the influence of prompt engineer-
ing (the set of prompts is provided in Supplementary Information H). 
We further encoded FHIBE images using the CLIP image encoder. For 
pre-processing, we used the same pre-processing function as the official 
implementation. We analysed different variants of the FHIBE dataset 
to control for various effects related to the human subject and image 
background. These variants included the original images, images with 
individuals masked in black, images with individuals blurred with Gauss-
ian noise of radius 100 and images with the background blacked out.

For the zero-shot classification analysis, we calculated the cosine 
similarity between the image embeddings and the text embeddings for 
each attribute. For example, for the scene attribute, we used two sets 
of prompts, each consisting of four text descriptions for indoor and 
outdoor environments. We computed the similarity between each text 
description and the image, selecting the description with the highest 
similarity as the assigned label for the image.

BLIP-2. The analysis protocol for the BLIP-275 model consisted of speci-
fying a prompt pair composed of an image and a text string in the form 
of a request or a question (the prompts are provided in Supplemen-
tary Information H). In our experiments, we instantiated the model 
to perform VQA tasks. We used the HuggingFace open-source BLIP-2 
implementation (Salesforce/blip2-opt-2.7b) for all our bias analysis 
experiments. We defined a set of prompts that will be used to probe the 
model along with images drawn from the FHIBE dataset. Each prompt 
from the prompt set was used to probe the model and the final set of 
prompts was chosen to maximize the model response rate (that is, the 
prompts for which the model provided the most non-empty responses). 
The full set of prompts, their corresponding model response rate and 
the chosen prompts are provided in Supplementary Information H.

Each prompt from this chosen set was paired with every image from 
the FHIBE dataset and the pair was used to prompt the BLIP-2 model. 
Depending on the type of prompt, the model response was filtered 
to extract the relevant information. The filtering mechanism varied 
according to the prompt tone.

The positive prompts asked the model to determine the reason for 
likeability, while the neutral prompts asked the model for the per-
son’s occupation based only on the provided image input. The model 
responses were in the form of ‘(S)he is likable because (s)he is a good 
person or (S)he’s a teacher’. To filter responses like these, we used regex 
expressions to isolate the predicted gender pronoun and the predicted 
occupation/likability reason from the model response.

When the model was prompted with the negatively toned prompt 
about convictions, the model responses included toxic and discrimina-
tory language. The model response was labelled toxic if it contained 
any of the words contained in our keyword set as shown in the Sup-
plementary Information H.

For this analysis, we prompted BLIP-2 with questions about indi-
viduals’ social attributes, but we do not condone the use of these tasks 
outside of bias detection. Predicting social attributes from facial images 
has long been a popular but problematic task in computer vision. For 
example, the ChaLearn First Impressions Challenge140 tasked partici-
pants with predicting personality traits like warmth and trustworthi-
ness from videos or images. Deep learning models have been used to 
map facial features to social judgements141,142. With the rise of founda-
tional models, such uses have also emerged for VQA models, which 
have been employed to predict personality traits of individuals from 
a single image of them143.

Such tasks are highly problematic due to their reliance on physiog-
nomic beliefs that personality traits or social attributes can be inferred 
from appearance alone144. We use such tasks in our paper solely to iden-
tify biases in the model, not to use the model’s inferences themselves. 
While VQA models should in theory refuse to answer such questions, 
BLIP-2 generally did answer them, with its answers revealing learned 
societal biases. Building on recent efforts to identify biases in VQA 

models by using targeted questions to identify biases145–147 (for exam-
ple, “Does this person like algebra?” and “Is this person peaceful or 
violent?”), our work shows how FHIBE can reveal biases in foundation 
models and cautions against the flawed assumptions they may promote.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The FHIBE dataset is publicly available at https://fairnessbenchmark.
ai.sony. At this site, users are required to register an account with a 
valid email address and to agree to the terms of use, after which access 
is immediately provided. Such controls ensure that data protection 
terms and other legal provisions are agreed to and that notices and 
obligations related to the handling of the dataset can be communi-
cated. The terms of use permit FHIBE to be used only for fairness/
bias evaluation and mitigation purposes. FHIBE cannot be used for 
training, with the narrow exception of training bias mitigation tools. 
This restriction preserves the utility of FHIBE as an evaluation set 
(models cannot be first trained on and then evaluated on FHIBE). It 
also reduces potential harms, such as the use of the data to train pre-
diction algorithms for sensitive (for example, gender, race, sexual ori-
entation) or objectionable (for example, attractiveness, criminality) 
attributes or the reproduction of individuals’ likeness through being 
included in generative AI training sets. Individuals may request the 
removal of their data and the dataset will be updated and rereleased 
(to maintain size and diversity), as appropriate, in response to removal 
requests. Users with access to the dataset will then be notified and 
directed to delete portions of the dataset or to delete it in its entirety 
and use the updated version of the dataset, as required in our terms 
of use. Other datasets used in the study to compare FHIBE are listed in  
the Methods.

Code availability
The code for running the fairness benchmarks across various com-
puter vision tasks on the FHIBE dataset is publicly available on Github148 
(https://github.com/SonyResearch/fairness-benchmark-public).
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Extended Data Fig. 1 | Distribution of subjects associated with key attributes 
in FHIBE. This figure shows the distribution of subjects corresponding to key 
attributes in the FHIBE dataset. Some subjects may have multiple annotated 
labels for specific attributes, resulting in variations in the total sample count 
across attributes. In compliance with the IRB protocol, certain sensitive 

attributes are not publicly released, as detailed in Supplementary Information A. 
For transparency, the aggregated distribution of key sensitive attributes is 
presented. While a few extreme outliers are observed in the self-reported weight 
and height values, these do not significantly affect the overall distribution.
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Extended Data Fig. 2 | Proportional distribution of subjects for pronoun, 
age, and apparent skin colour across FHIBE and other datasets. This figure 
compares the proportional distribution of subjects for (a) pronoun, (b) age, 
and (c) apparent skin colour attributes in FHIBE and other datasets used in this 

paper. Original attribute labels are preserved. Datasets lacking a specific 
attribute are excluded from the corresponding subfigure. Note that some 
subjects may have multiple annotated labels for specific attributes, resulting  
in variations in the total sample count across attributes.



Extended Data Fig. 3 | Feature importance for face detection. This figure 
shows feature importance scores extracted from random forest models for two 
face detection methods: (a) RetinaFace and (b) MTCNN. Features are ranked 

from most to least important, and the elbow method was applied to select the 
top-K attributes (K = 5 for RetinaFace, K = 4 for MTCNN) for use in decision tree 
models.
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Extended Data Fig. 4 | Decision tree models for face detection. This figure 
illustrates decision tree models for two face detection methods: (a) RetinaFace 
and (b) MTCNN. The models highlight key attributes predictive of face 

detection performance. Notably, attributes such as baldness have strong 
correlations with gender.



Extended Data Fig. 5 | Feature importance for person detection. This figure 
shows feature importance scores extracted from random forest models for two 
person detection methods: (a) Faster R-CNN and (b) Deformable DETR. Features 

are ranked from most to least important. The elbow method was applied to 
select the top-K attributes (K = 5 for Faster R-CNN, K = 6 for Deformable DETR) 
for use in decision tree models. Lighting refers to the direction of head/face.
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Extended Data Fig. 6 | Decision tree models for person detection: Faster 
R-CNN and Deformable DETR. This figure illustrates decision tree models  
for person detection using (a) Faster R-CNN and (b) Deformable DETR.  

Notably, subject interactions, such as hugging or embracing, have a large impact 
on the performance of both models.



Extended Data Fig. 7 | Face parsing performance by age and facial hair colour. 
This figure illustrates face parsing performance across facial hair colour 
categories for subjects aged 60+ years using the DML-CSR model. It highlights 

variations in model performance conditioned on facial hair colour, particularly 
for individuals with white facial hair.
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Extended Data Fig. 8 | See next page for caption.



Extended Data Fig. 8 | Error rates across hairstyle pairs for face verification 
models. This figure shows the percentage of incorrect predictions for  
face verification using (a) ArcFace60, (b) CurricularFace61, and (c) FaceNet62 
models. For He/Him/His pronouns, errors are concentrated in cases with non-
stereotypical hairstyles, whereas for She/Her/Hers pronouns, errors remain 
high whenever hairstyle variation within the pair is large. The number on top of 

each bar in black denotes the ratio of incorrect samples within that subgroup, 
while the number in red denotes the percentage of individuals with that pronoun 
who exhibit the corresponding hairstyle combination. This pattern highlights 
that hairstyle diversity disproportionately impacts error rates for She/Her/Hers 
pronouns. Error rates are conditioned on hairstyle changes and pronoun groups, 
underscoring variability in model performance.
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Extended Data Table 1 | Overview of human-centric computer vision (HCCV) datasets commonly used for fairness

This table compares the properties of 27 HCCV datasets frequently used for evaluating bias in computer vision models. Features include dataset size, collection method, availability of  
annotations (Bounding Boxes [BB], Key Points [KP], Segmentation Masks [SM]), consent details, terms of use, and demographic diversity attributes. The abbreviations used are defined as  
follows: BB (a: automatic, m: manual, F: face, O: object, P: person), KP/SM (a: automatic, m: manual, v: manually verified, with the integer value denoting the number of key points or landmarks, 
or segmentation categories), Consent (no details: consent obtained, but no details provided; details: consent details provided, but no explicit mention of AI; details, for AI: consent details 
provided, including data processing for AI fairness purposes), and Terms of Use (n-c: non-commercial, research: research only, eval.: evaluation only, edu.: educational use, revoked: authors no 
longer make dataset available). Attributes marked with * are self-reported. (-) denotes where the relevant information was not available. MS-Celeb-1M127, YFCC100M149, Megaface150, VGGFace151, 
Diversity in Faces (DiF)152, Pilot Parl. Benchmark9, FRGC153, RWF154, Morph155, Adience156, BUPT-Globalface157, WIDERFACE-DEMO158, KANFace159, FairFace160, ImageNet (ILSVRC)161, CelebA86, 
LFWA162, MTFL163, UTKFace164, MIAP42, FACET24, MS-COCO40, VQA 2.041, Casual Conversations25, CCV226, Chicago Face Database27, Dollar Street43.



Extended Data Table 2 | Top-40 (out of 278) cases of highest min-max intersectional group disparity across tasks and models

Disparity is defined as 1 MED worst group
MED best group

( )
( )− , with MED(g) being the median performance of group g. The table includes the task/model under evaluation, the intersectional attributes analysed,  

the disparity value, and the groups with the worst/best median performance. Abbreviations: FD (Face Detection), FP (Face Parsing), PP (Person Parsing), mRCNN (Mask R-CNN), P (Pronoun),  
A (Age), AR (Ancestry Region), AS (Ancestry Subregion), ST (Skin Tone in Fitzpatrick scale).
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Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection The data collection process did not involve the use of commercial or open-source software for data capture, as images were submitted 
directly by participants using their own devices to data vendors. Annotations were performed using vendor-provided platforms.

Data analysis Data analysis was conducted using a combination of open-source tools and custom scripts. Python (version 3.10) served as the primary 
programming language, with key dependencies including Pandas (2.2.1) for data manipulation, NumPy (1.26.4) for numerical computations,  
Scikit-learn (1.5.0) for statistical and machine learning analyses, and Torch (2.2.0 for the machine learning and deep learning framework. 
Image processing tasks were handled using OpenCV (4.10.0.84) and Pillow (10.2.0), while visualization was performed with Matplotlib (3.8.3) 
and Seaborn (0.13.2). For annotation processing, Flask-based infrastructure (2.2.2) was employed to facilitate internal manual review. The 
analysis pipeline was managed using Poetry (2.1.1) for dependency control, ensuring reproducibility. 
 
For the utility evaluations, we used torchvision for pre-trained models. For bias diagnosis, we used jupyterlab (4.2.5) for analysis, the FP 
Growth algorithm via mlxtend (0.23.1), CLIP from OpenAI, transformers from Hugging Face, and the Mann-Whitney U test algorithm from 
scipy (1.13.1). For measuring dataset diversity, we used vendi-score (0.0.3). For inpainting using Stable Diffusion, we used transformers 
(4.39.1), diffusers (0.27.2). For logo detection, we utilized MM2021 Robust Logo Detector and the Google Vision API for logo detection. 
 
The custom code we developed for running the fairness benchmarks across various computer vision tasks on the FHIBE dataset is publicly 
available at https://github.com/SonyResearch/fairness-benchmark-public.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

The FHIBE dataset is publicly available at https://fairnessbenchmark.ai.sony. At this site, users are required to register an account with a valid email address and to 
agree to the Terms of Use, after which access is immediately provided. Such controls ensure that data protection terms and other legal provisions are agreed to and 
that notices and obligations related to the handling of the dataset can be communicated.   
 
The Terms of Use only permit FHIBE to be used for fairness/bias mitigation purposes. FHIBE cannot be used for training, with the narrow exception of training bias 
mitigation tools. This restriction preserves the utility of FHIBE as an evaluation set (models cannot be first trained on and then evaluated on FHIBE). It also reduces 
potential harms, such as the use of the data to train prediction algorithms for sensitive (e.g., gender, race, sexual orientation) or objectionable (e.g., attractiveness, 
criminality) attributes or the reproduction of individuals' likeness through being included in generative AI training sets. 
 
Individuals may request the removal of their data and the dataset will be updated and re-released (to maintain size and diversity), as appropriate, in response to 
removal requests. Users with access to the dataset will then be notified and directed to delete portions of the dataset or to delete it in its entirety and use the 
updated version of the dataset, as required in our Terms of Use. 
 
In addition to FHIBE, the following datasets were used in the study. All of these datasets were publicly available at the time the study was conducted. 
 
COCO 2014 Validation: http://images.cocodataset.org/annotations/annotations_trainval2014.zip 
COCO Whole Body: https://drive.google.com/file/d/1thErEToRbmM9uLNi1JXXfOsaS5VK2FXf, https://drive.google.com/file/
d/1N6VgwKnj8DeyGXCvp1eYgNbRmw6jdfrb 
Annotations for COCO Whole Body: https://docs.google.com/forms/d/e/1FAIpQLSdjLGJ2AhOKBGou_VqaWpLJUAL3ieJ2WNmEmGnuIZgCvjbx2Q/viewform 
 
FACET: https://ai.meta.com/datasets/facet-downloads 
 
Open Images MIAP: https://storage.googleapis.com/openimages/open_images_extended_miap/open_images_extended_miap_images_train.lst, https://
storage.googleapis.com/openimages/open_images_extended_miap/open_images_extended_miap_images_val.lst, https://storage.googleapis.com/openimages/
open_images_extended_miap/open_images_extended_miap_images_test.lst, https://storage.googleapis.com/openimages/open_images_extended_miap/
open_images_extended_miap_boxes_train.csv, https://storage.googleapis.com/openimages/open_images_extended_miap/
open_images_extended_miap_boxes_val.csv, https://storage.googleapis.com/openimages/open_images_extended_miap/
open_images_extended_miap_boxes_test.csv 
 
WiderFace: https://drive.google.com/file/d/15hGDLhsx8bLgLcIRD5DhYt5iBxnjNF1M, https://drive.google.com/file/d/1GUCogbp16PMGa39thoMMeWxp7Rp5oM8Q, 
https://drive.google.com/file/d/1HIfDbVEWKmsYKJZm4lchTBDLW5N7dY5T 
 
CelebAMask-HQ: https://drive.google.com/file/d/1badu11NqxGf6qM3PTTooQDJvQbejgbTv 
 
CCv1: https://ai.facebook.com/datasets/casual-conversations-dataset/ 
CCv2: https://ai.meta.com/datasets/casual-conversations-v2-downloads/ 
 
IMDB-WIKI: https://data.vision.ee.ethz.ch/cvl/rrothe/imdb-wiki/static/imdb_crop.tar, https://data.vision.ee.ethz.ch/cvl/rrothe/imdb-wiki/static/wiki_crop.tar

Research involving human participants, their data, or biological material
Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation), 
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender Participants did not report sex or gender. They did, however, self-report their gender pronouns. We allowed for multiple 
selections from a predefined list (or “Prefer not to say”). No inferences were made about participants' sex or gender based 
on pronoun selections. Subjects consented to the release of this information as part of the public dataset. The distribution of 
images and subjects across pronouns can be found in Supplement F.2. Analysis results using the pronoun data can be found 
in the Evaluation Results section.

Reporting on race, ethnicity, or 
other socially relevant 
groupings

Race and ethnicity were not collected in this study. Participants self-reported their ancestry at a required regional level and 
an optional sub-regional level based on United Nations Statistics Division (UNSD) categories (see Supplement A). This was 
done to provide a consistent frame of reference. Participants were asked, "Where do your ancestors (e.g., great-
grandparents) come from?" These responses were self-reported and were not used as proxies for race, ethnicity, or 
socioeconomic status. Other socially relevant groupings collected included self-reported nationality, and country of 
residence, and apparent and natural skin tone (using predefined RGB-based categories inspired by the Fitzpatrick scale).

Population characteristics Collected participant characteristics included self-reported age, pronouns, nationality, country/territory of residence, 
ancestry (regional and sub-regional), skin tone, eye color, hair type, hair style, hair color, facial hairstyle, facial hair color, 
height, weight, facial marks, biologically related subject, disability/difficulty status, pregnancy status, subject-object 
interaction, and subject-subject interaction (See Supplement A). These attributes were self-reported by participants and 
provided directly through a data vendor’s platform. They were not inferred from images. 
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Additionally, image annotations such as time and date of capture, place of capture, weather, facial illumination, scene, and 
camera position were collected. In cases where an image contained two consensual image subjects, separate annotations 
were obtained for each subject. Head pose and camera distance were further annotated by data annotators after 
submission.

Recruitment Participants were recruited through external data vendors, who were required to ensure that all image subjects provided 
explicit informed consent. Only individuals above the age of majority in their country of residence were eligible to participate. 
Vendors were instructed not to use referral programs or provide recruitment incentives beyond standard compensation. To 
ensure understanding of the study terms, participants had to demonstrate basic English proficiency by answering at least two 
out of three multiple-choice questions correctly before participation. Potential self-selection biases include the requirement 
for English proficiency, which may have limited participation from non-English-speaking populations.

Ethics oversight Data collection commenced after April 23, 2023, following Institutional Review Board (IRB) approval from WCG Clinical, Inc. 
(study number 1352290). All participants provided informed consent, and image subjects additionally consented to their 
identifiable images being included in the dataset. 

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Behavioural & social sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description This study involves the collection of quantitative data through self-reported attributes, image submissions, and additional 
annotations. Participants provided structured responses via a data vendor’s platform, and the research team and QA workers 
conducted additional annotations and quality control.

Research sample The research sample consists of crowdsourced image subjects who voluntarily participated through data vendor platforms. 
Participants provided images along with demographic and physical characteristic annotations, including age, pronouns, nationality, 
country/territory of residence, ancestry, and other self-reported attributes. See Supplement F.2 for information on the demographic 
distribution. The dataset was designed to maximize diversity across multiple attributes rather than represent a specific population.

Sampling strategy Participants were recruited through external data vendors following predefined inclusion criteria. The vendors ensured compliance 
with guidelines prioritizing diversity across demographic, environmental, and imaging conditions, roughly resulting in stratified 
sampling across these dimensions. Given that FHIBE was collected with the aim of being used to detect bias across a wide variety of 
tasks and models (many possible hypotheses), and FHIBE sampled from a distribution distinct from existing publicly available 
datasets, power analyses at the outset of the project using existing datasets were unreliable. The initial sample size was determined 
based on previously collected proprietary datasets and budget constraints. We have verified, however, the utility of FHIBE in our 
analyses showing that FHIBE is able to detect statistically significant biases for many human-centric computer vision task-model pairs.

Data collection Images and self-reported annotations were collected via vendor platforms, with participants submitting both image data and 
attribute information. Vendors facilitated the collection of consent forms and copyright agreements. To avoid potentially coercive 
practices, we instructed vendors not to provide participants support (beyond platform tutorials and general technical support) in 
signing up for or submitting to the project. After data submission, additional annotations—including apparent attributes and 
environmental metadata—were collected through a combination of manual annotation by QA workers and automated methods. The 
research team conducted additional validation and quality control.

Timing Data collection commenced after April 23, 2023, following IRB approval from WCG Clinical, Inc. (study number 1352290). The dataset 
consists of images and annotations collected within a defined period through vendor-managed platforms. Note, however, 
participants were allowed to submit historical images, i.e., images taken prior to April 23, 2023. The final delivery of images used in 
the initial launch of FHIBE was on June 26, 2024. More images might be collected going forward for future versions of the dataset.

Data exclusions Overall, in order to arrive at the 10,319 images for the initial launch of FHIBE, we collected a total of 28,703 images from three data 
vendors. 6,868 images were removed due to noncompliance with project guidelines and quality specifications, while 5,855 images 
were excluded due to issues with consent or copyright forms. An additional 3,848 images were identified as potentially fraudulent 
and removed following a combination of automated and manual verification methods. A small number of images (~11) were 
excluded due to minor annotation inconsistencies (e.g., missing skin color annotations), ~27 were removed for containing offensive 
content, and ~2 were excluded for other reasons such as duplicate subject IDs.  
 
These exclusions were implemented as part of predefined quality control measures conducted by vendors and the research team to 
ensure the integrity and ethical compliance of the dataset. More information about these exclusions can be found in Methods.

Non-participation Participants can voluntarily choose to withdraw their data from the study at any point for any reason, without any impact on the 
compensation they received for their participation. So far, three participants have withdrawn their data.
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Randomization Participants were not allocated into experimental groups.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Plants

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Novel plant genotypes N/A

Seed stocks N/A

Authentication N/A

Plants
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